155 research outputs found

    Eradication, Containment, Management and Restoration. A report to the European Commission Working Group 3 on Invasive Species Policy

    Get PDF
    • Working Group Invasive Species n. 3 • Task 3.1: Eradication, Containment, Management and Restoration o Objective o Scope o Definitions o Eradication o Containment o Mitigation o Coexistence and Acceptance o Restoration o The Role of EU and MS o Practical considerations o References OBJECTIVE To minimise the damage caused by established IAS to species, habitats, ecosystem function and services, economic activities, together with human and animal health. To be achieved, where possible, by the eradication of IAS and, where impractical, the limitation of their impact, further spread and management of the consequences

    Socio‐economic impact classification of alien taxa (SEICAT)

    Get PDF
    1 Many alien taxa are known to cause socio‐economic impacts by affecting the different constituents of human well‐being (security; material and non‐material assets; health; social, spiritual and cultural relations; freedom of choice and action). Attempts to quantify socio‐economic impacts in monetary terms are unlikely to provide a useful basis for evaluating and comparing impacts of alien taxa because they are notoriously difficult to measure and important aspects of human well‐being are ignored. 2 Here, we propose a novel standardised method for classifying alien taxa in terms of the magnitude of their impacts on human well‐being, based on the capability approach from welfare economics. The core characteristic of this approach is that it uses changes in peoples' activities as a common metric for evaluating impacts on well‐being. 2 Impacts are assigned to one of five levels, from Minimal Concern to Massive, according to semi‐quantitative scenarios that describe the severity of the impacts. Taxa are then classified according to the highest level of deleterious impact that they have been recorded to cause on any constituent of human well‐being. The scheme also includes categories for taxa that are not evaluated, have no alien population, or are data deficient, and a method for assigning uncertainty to all the classifications. To demonstrate the utility of the system, we classified impacts of amphibians globally. These showed a variety of impacts on human well‐being, with the cane toad (Rhinella marina) scoring Major impacts. For most species, however, no studies reporting impacts on human well‐being were found, i.e. these species were data deficient. 2 The classification provides a consistent procedure for translating the broad range of measures and types of impact into ranked levels of socio‐economic impact, assigns alien taxa on the basis of the best available evidence of their documented deleterious impacts, and is applicable across taxa and at a range of spatial scales. The system was designed to align closely with the Environmental Impact Classification for Alien Taxa (EICAT) and the Red List, both of which have been adopted by the International Union of Nature Conservation (IUCN), and could therefore be readily integrated into international practices and policies

    are ecologically harmful alien species associated with particular introduction pathways?

    Get PDF
    Prioritization of introduction pathways is seen as an important component of the management of biological invasions. We address whether established alien plants, mammals, freshwater fish and terrestrial invertebrates with known ecological impacts are associated with particular introduction pathways (release, escape, contaminant, stowaway, corridor and unaided). We used the information from the European alien species database DAISIE (www.europe- aliens.org) supplemented by the EASIN catalogue (European Alien Species Information Network), and expert knowledge. Plants introduced by the pathways release, corridor and unaided were disproportionately more likely to have ecological impacts than those introduced as contaminants. In contrast, impacts were not associated with particular introduction pathways for invertebrates, mammals or fish. Thus, while for plants management strategies should be targeted towards the appropriate pathways, for animals, management should focus on reducing the total number of taxa introduced, targeting those pathways responsible for high numbers of introductions. However, regardless of taxonomic group, having multiple introduction pathways increases the likelihood of the species having an ecological impact. This may simply reflect that species introduced by multiple pathways have high propagule pressure and so have a high probability of establishment. Clearly, patterns of invasion are determined by many interacting factors and management strategies should reflect this complexity

    No saturation in the accumulation of alien species worldwide

    Get PDF
    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization

    The Convention on Biological Diversity (CBD)’s Post-2020 target on invasive alien species – what should it include and how should it be monitored?

    Get PDF
    The year 2020 and the next few years are critical for the development of the global biodiversity policy agenda until the mid-21st century, with countries agreeing to a Post-2020 Global Biodiversity Framework under the Convention on Biological Diversity (CBD). Reducing the substantial and still rising impacts of invasive alien species (IAS) on biodiversity will be essential if we are to meet the 2050 Vision where biodiversity is valued, conserved, and restored. A tentative target has been developed by the IUCN Invasive Species Specialist Group (ISSG), and formally submitted to the CBD for consideration in the discussion on the Post-2020 targets. Here, we present properties of this proposal that we regard as essential for an effective Post-2020 Framework. The target should explicitly consider the three main components of biological invasions, i.e. (i) pathways, (ii) species, and (iii) sites; the target should also be (iv) quantitative, (v) supplemented by a set of indicators that can be applied to track progress, and (vi) evaluated at medium- (2030) and long-term (2050) time horizons. We also present a proposed set of indicators to track progress. These properties and indicators are based on the increasing scientific understanding of biological invasions and effectiveness of responses. Achieving an ambitious action-oriented target so that the 2050 Vision can be achieved will require substantial effort and resources, and the cooperation of a wide range of stakeholders

    Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff

    Get PDF
    In a recent publication, we proposed that the increasing number of range-expanding species that track human induced environmental change warrant specific recognition in science and biodiversity management, and we proposed the term ‘neonative’ for these taxa. Here, we reply to two letters (Wilson 2019, Sagoff 2019) that criticised specific, yet different aspects presented in our publication. While we disagree on several points with both authors, we agree that a broader discourse is needed for developing robust and widely accepted definitions and terms for the ever more important phenomenon of neonative species

    An inventory of invasive alien species in China

    Get PDF
    Invasive alien species (IAS) are a major global challenge requiring urgent action, and the Strategic Plan for Biodiversity (2011–2020) of the Convention on Biological Diversity (CBD) includes a target on the issue. Meeting the target requires an understanding of invasion patterns. However, national or regional analyses of invasions are limited to developed countries. We identified 488 IAS in China’s terrestrial habitats, inland waters and marine ecosystems based on available literature and field work, including 171 animals, 265 plants, 26 fungi, 3 protists, 11 procaryots, and 12 viruses. Terrestrial plants account for 51.6% of the total number of IAS, and terrestrial invertebrates (104 species) for 21.3%. Of the total numbers, 67.9% of plant IAS and 34.8% of animal IAS were introduced intentionally. All other taxa were introduced unintentionally despite very few animal and plant species that invaded naturally. In terms of habitats, 64.3% of IAS occur on farmlands, 13.9% in forests, 8.4% in marine ecosystems, 7.3% in inland waters, and 6.1% in residential areas. Half of all IAS (51.1%) originate from North and South America, 18.3% from Europe, 17.3% from Asia not including China, 7.2% from Africa, 1.8% from Oceania, and the origin of the remaining 4.3% IAS is unknown. The distribution of IAS can be divided into three zones. Most IAS are distributed in coastal provinces and the Yunnan province; provinces in Middle China have fewer IAS, and most provinces in West China have the least number of IAS. Sites where IAS were first detected are mainly distributed in the coastal region, the Yunnan Province and the Xinjiang Uyghur Autonomous Region. The number of newly emerged IAS has been increasing since 1850. The cumulative number of firstly detected IAS grew exponentially

    Projecting the continental accumulation of alien species through to 2050

    Get PDF
    Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 +/- 237 alien species) and relative terms, followed by Temperate Asia (+1,597 +/- 197), Northern America (1,484 +/- 74) and Southern America (1,391 +/- 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species

    A grid-based map for the biogeographical regions of Europe

    Get PDF
    Š Pensoft Publishers. Background Biogeographical units are widely adopted in ecological research and nature conservation management, even though biogeographical regionalisation is still under scientific debate. The European Environment Agency provided an official map of the European Biogeographical Regions (EBRs), which contains the official boundaries used in the Habitats and Birds Directives. However, these boundaries bisect cells in the official EU 10 km x 10 km grid used for many purposes, including reporting species and habitat data, meaning that 6881 cells overlap two or more regions. Therefore, superimposing the EBRs vector map over the grid creates ambiguities in associating some cells with European Biogeographical Regions. New information To provide an operational tool to unambiguously define the boundaries of the eleven European Biogeographical Regions, we provide a specifically developed raster map of Grid-Based European Biogeographical Regions (GB-EBRs). In this new map, the borders of the EBRs are reshaped to coherently match the standard European 10 km x 10 km grid imposed for reporting tasks by Article 17 of the Habitats Directive and used for many other datasets. We assign each cell to the EBR with the largest area within the cell
    • …
    corecore